![]()
内容推荐 本书专注于预测建模的实际应用,介绍了从数据预处理到建模再到模型评估和选择的整个过程,以及背后的统计思想,涉及各种回归技术和分类技术。从解决实际问题延伸到模型拟合,以及随之出现的主题,如处理类不平衡、选择预测因子等在实践中经常出现的问题,作者意在为读者提供预测建模过程的指导,并结合开源软件R语言来求解实际问题,详细给出R代码和处理的步骤。R包Applied Predictive Modeling包含了 书中例题和习题使用的数据,以及用于重复书中每一章分析的R代码。 目录 1 Introduction 1.1 Prediction Versus Interpretation 1.2 Key Ingredients of Predictive Models 1.3 Terminology 1.4 Example Data Sets and Typical Data Scenarios 1.5 Overview 1.6 Notation Part Ⅰ General Strategies 2 A Short Tour of the Predictive Modeling Process 2.1 Case Study:Predicting Fuel Economy 2.2 Themes 2.3 Summary 3 Data Pre-processing 3.1 Case Study:Cell Segmentation in High-Content Screening 3.2 Data Transformations for Individual Predictors 3.3 Data Transformations for Multiple Predictors 3.4 Dealing with Missing Values 3.5 Removing Predictors 3.6 Adding Predictors 3.7 Binning Predictors 3.8 Computing Exercises 4 Over-Fitting and Model Tuning 4.1 The Problem of Over-Fitting 4.2 Model Tuning 4.3 Data Splitting 4.4 Resampling Techniques …… |