智慧城市:大数据预测方法与应用豆瓣PDF电子书bt网盘迅雷下载电子书下载-霍普软件下载网

网站首页   软件下载   游戏下载   翻译软件   电子书下载   电影下载   电视剧下载   教程攻略   音乐专区

请输入您要查询的图书:

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

电子书 智慧城市:大数据预测方法与应用
分类 电子书下载
作者 刘辉
出版社 科学出版社
下载 暂无下载
介绍
内容推荐
Smart Cities: Big Data Prediction Methods and Applications is the first reference to provide a comprehensive overview of smart cities with the latest big data predicting techniques.This timely book discusses big data forecasting for smart cities. It introduces big data forecasting techniques for the key aspects (e.g., traffic, environment, building energy,green grid, etc.) of smart cities, and explores three key areas that can be improved using big data prediction: grid energy, road traffic networks and environmental health in smart cities. The big data prediction methods proposed in this book are highly significant in terms of the planning, construction, management, control and development
目录
Part I Exordium
1 Key Issues of Smart Cities
1.1 Smart Grid and Buildings
1.1.1 Overview of Smart Grid and Building
1.1.2 The Importance of Smart Grid and Buildings in Smart City
1.1.3 Framework of Smart Grid and Buildings
1.2 Smart Traffic Systems
1.2.1 Overview of Smart Traffic Systems
1.2.2 The Importance of Smart Traffic Systems for Smart City
1.2.3 Framework of Smart Traffic Systems
1.3 Smart Environment
1.3.1 Overview of Smart Environment for Smart City
1.3.2 The Importance of Smart Environment for Smart City
1.3.3 Framework of Smart Environment
1.4 Framework of Smart Cities
1.4.1 Key Points of Smart City in the Era of Big Data
1.4.2 Big Data Time-series Forecasting Methods in Smart Cities
1.4.3 Overall Framework of Big Data Forecasting in Smart Cities
1.5 The Importance Analysis of Big Data Forecasting Architecture for Smart Cities
1.5.1 Overview and Necessity of Research
1.5.2 Review on Big Data Forecasting in Smart Cities
1.5.3 Review on Big Data Forecasting in Smart Gird and Buildings
1.5.4 Review on Big Data Forecasting in Smart Traffic Systems
1.5.5 Review on Big Data Forecasting in Smart Environment
References
Part II Smart Grid and Buildings
2 Electrical Characteristics and Correlation Analysis in Smart Grid
2.1 Introduction
2.2 Extraction of Building Electrical Features
2.2.1 Analysis of Meteorological Elements
2.2.2 Analysis of System Load
2.2.3 Analysis of Thermal Perturbation
2.3 Cross-Correlation Analysis of Electrical Characteristics
2.3.1 Cross-Correlation Analysis Based on MI
2.3.2 Cross-Correlation Analysis Based on Pearson Coefficient
2.3.3 Cross-Correlation Analysis Based on KendallCoefficient
2.4 Selection of Electrical Characteristics
2.4.1 Electrical Characteristics of Construction Power Grid
2.4.2 Feature Selection Based on Spearman Correlation Coefficient
2.4.3 Feature Selection Based on CFS
2.4.4 Feature Selection Based on Global Search-ELM
2.5 Conclusion
References
3 Prediction Model of City Electricity Consumption
3.1 Introduction
3.2 Original Electricity Consumption Series
3.2.1 Regional Correlation Analysis of Electricity Consumption Series
3.2.2 Original Sequences for Modeling
3.2.3 Separation of Sample
……
截图
随便看

免责声明
本网站所展示的内容均来源于互联网,本站自身不存储、不制作、不上传任何内容,仅对网络上已公开的信息进行整理与展示。
本站不对所转载内容的真实性、完整性和合法性负责,所有内容仅供学习与参考使用。
若您认为本站展示的内容可能存在侵权或违规情形,请您提供相关权属证明与联系方式,我们将在收到有效通知后第一时间予以删除或屏蔽。
本网站对因使用或依赖本站信息所造成的任何直接或间接损失概不承担责任。联系邮箱:101bt@pm.me