表面和薄膜科学是微电子、光电子和磁工业的物理基础,是现代社会技术进步的科学保证。在微观以至原子水平上研究和操纵表面让我们能够理解许多具有重要技术意义之器件的制作与运行。本书关注发生在表面和薄膜中的物理过程,详细介绍了与表面和薄膜相关的物理过程,包括热力学与运动学的理论基础,洁净表面的制备和表面的表征与分析技术,表面吸附与脱附过程,金属和半导体表面性质,外延生长和薄膜器件的表面过程等等内容。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 表面和薄膜过程导论(第4版) |
分类 | 科学技术-自然科学-物理 |
作者 | J.A.Venables |
出版社 | 世界图书出版公司 |
下载 | ![]() |
简介 | 编辑推荐 表面和薄膜科学是微电子、光电子和磁工业的物理基础,是现代社会技术进步的科学保证。在微观以至原子水平上研究和操纵表面让我们能够理解许多具有重要技术意义之器件的制作与运行。本书关注发生在表面和薄膜中的物理过程,详细介绍了与表面和薄膜相关的物理过程,包括热力学与运动学的理论基础,洁净表面的制备和表面的表征与分析技术,表面吸附与脱附过程,金属和半导体表面性质,外延生长和薄膜器件的表面过程等等内容。 目录 Preface Chapter 1 Introduction to surface processes 1.1 Elementary thermod)’namic ideas of surfaces 1.1.1 Thermodynamicpotentialsandthe dividingsurface 1.1.2 Suface tension andsurface energy 1.1.3 Surface energy andsurfacestress l.2 Surface energies and the Wulff theorem 1.2.1 General considerations 1.2.2 The terrace-ledge-kink model 1.2.3 Wulffconstruction and thefom ofsmall crystals 1.3 Thermodynamics versus kinetics 1.3.1 Thermodynamics ofthe vaporpressure 1.3.2 The kinetics ofcrystalgrowth 1.4 Introduction to surface and adsorbate reconstructions 1.4.1 0veryieW 1.4.2 General comments andnotation 1.4.3 Examplesofflxl)structures 1.4.4 Si(001)(2x1)and relatedsemiconductor structures 1.4.5 Thefamous 7x7 stucture of Si(111) 1.4.6 VarioUS‘root-three’structures 1.4.7 Potnr semiconductors,such as GaAs(11) 1.4.8 Ionic crystalstructures,suchas NnCl,CaF2,Mgo oralumina 1.5 Introduction to surface electronics 1.5.1 Work unction φ 1.5.2 Electron affinity,x,andionizationpotential φ 1.5.3 Surface statesandrelatedideas 1.5.4 SurfaceBrillou zone 1.5.5 Bandbending,due to surface states 1.5.6 The imageforce 1.5.7 Screening Further reading for chapter l Problems for chapter l Chapter 2 Surfaces in vacuum.:ultra-high vacuum techniques and processes 2.1 Kinetic theory concepts 2.1.1 Arrival rate ofatomsata surface 2.1.2 Themoleculardensity,n 2.1.3 The meanfreepath.A 2.1.4 Themonolayerarrivaltune 2.2 VACHUm concepts 2.2.1 System volumes,leak rates andpumping speeds 2.2.2 The idea of conductance 2.2.3 Measurement ofsystem pressure 2.3 UHV hardware:pumps,tubes,materials and pressure measurement 2.3.1 Introduction:sources ofinformation 2.3.2 Typesofpump 2.3.3 Chambers,tubeandflange sizes 2.3.4 Choice ofmaterials 2.3.5 Pressure medsurement andgas composition 2.4 Surface preparation and cleaning procedures:in situ experiments 2.4.1 Cleaningandsamplepreparation 2.4.2 Proceduresfo,in situ experiments 2.4.3 Sampletransferdevices 2.4.4 From laboratory experiments toproductionprocesses 2.5 Thim film deposition procedures:sources of information 2.5.1 Historical descriptions and recent compilations 2.5.2 Thermalevaporation andthe uniformity ofdeposits 2.5.3 Molecular beam epitaxyand relatedmethods 2.5.4 Sputtering and hgn beam assisted deposition 2.5.5 Chemical vapor deposition techniques Further reading for chapter 2 Problems for chapter 2 Chapter 3 Electron-based techniques for examining surface and thin film processes 3.1 Classification of surface and microscopy techniques 3.1.1 Surface techniquesasscatteringexperiments 3.1.2 Reasonsfor surface sensitivity 3.1.3 Microscopic examination ofsurfaces 3.1.4 Acronyms 3.2 Diffraction and quasi-elastic scattering techniques 3.2.1 LEED 3.2.2 RHEED and THEED 3.2.3 Elanstic quasi-elastic and inelastic scattering 3.3 Inelastic scattering techniques:chemical and electronic state information 3.3.1 Electronspectroscopic techniques 3.3.2 Photoelectron spectroscopies:XPS and UPs 3.3.3 Auger electron spectroscopy energies and atomic physics 3.3.4 AES,xPSandUPsin solidsandatsurfaces 3.4 Quantification of Auger spectra 3.4.1 General equation describing quantification 3.4.2 Ratio techniques 3.5 Microscopy-spectroscopy:SEM,SAM,SPM,etc. 3.5.1 ScanningelectronandAugermicroscopy 3.5.2 Auger andimage analysis ofjreal worm samples 3.5.3 Towards the highestspatial resolution:(a)SEMISTEM 3.5.4 Towards the highest spatial resolution:(b)scannedprobe microscopy-spectroscopy Further reading for chapter 3 Problems,talks and projects for chapter 3 Chapter 4 Surface processes in adsorption 4.1 Chemi-and physisorption 4.2 Statistical physies of adsorption at low coverage 4.2.1 Generalpoints 4.2.2 Localized adsorption the Langmuir adsorption isotherm 4.2.3 The two.dimensional adsorbedgas:Henry law adsorption 4.2.4 Interactions and vibrations in higher density adsorbates 4.3 Phase diagrams and phase transitions 4.3.1 Adsorption in equilibrium with the gasphase 4.3.2 Adsorption out ofequilibrium with the gasphase 4.4 Physisorption:interatomic forces and lattice dynamical mode 4.4.1 Thermodynamic informationfrom single surface techniques 4.4.2 The crystallography ofmonolayer solids 4.4.3 Meltingintwodimensions 4.4.4 Construction and understanding ofphase diagrams 4.5 Chemisorption:quantum mechanical models and chemical practice 4.5.1 Phases andphase transitions of the lattice gas 4.5.2 The Newns-Anderson modelandbeyond 4.5.3 Chemisorption:thefirst stages of oxidation 4.5.4 Chemisorption and catalysis:macroeconomics,macromolecules and microscopy Further reading for chapter 4 Problems and projects for chapter 4 Chapter 5 Surface processes in epitaxial growth 5.1 Introduction:growth modes and nucleation barriers 5.1.1 Whyare westudying epitaxialgrowth? 5.1.2 Simplemodels—howfar canwego? 5.1.3 Growth modes and adsorption isotherms 5.1.4 Nucleation barriers in classical and atomistic mode/s 5.2 Atomistic models and rate equations 5.2.1 Rate equation&controlling energies,and simulations 5.2.2 Elements ofrate equationmodel 5.2.3 Regimes ofcondensation 5.2.4 General equationsfor the maximum cluster density 5.2.5 Comments on individual treatments 5.3 Metal nucleation and growth on insulating substrates 5.3.1 Microscopy ofislandgrowth metals on alkali halides 5.3.2 Metals on insulatots:checks and complications 5.3.3 Defect.inducednucleation on oxides andfluorides 5.4 Metal deposition studied by UHV microscopies 5.4.1 In situ UHVSEMandLEEM of metals on metaIs 5.4.2 FIMstudiesofsurfacediffusion onmetals 5.4.3 Energiesfrom STM and other techniques 5.5 Steps ripening and interdiffusion 5.5.1 Steps as one dimensional sinks 5.5.2 Steps as sources diffusion and Ostwald ripening 5.5.3 Interdiffusion in magnetic multilayers Further reading for chapter 5 Problems and projects for chapter 5 Chapter 6 Electronic structure and emission processes at metallic surfaces 6.1 The electron gas:work function-surface structure and energy 6.1.1 Free electron moodls anddensity functionals 6.1.2 Beyondfree electrons workfunction,surface structure and energy 6.1.3 lues ofthe wolkfunction 6.1.4 Values ofthe surface energy 6.2 Electron emission processes 6.2.1 Thermionic emission 6.2.2 CoMfield em&sion 6.2.3 Adsorption anddiffusion:FES,FEMandthermal eldemitters 6.2.4 Secondary electron emission 6.3 Magnetism at surfaces and in thin films 6.3.1 Symmetry,symmetry breaking andphase transitions 6.3.2 Anisotropic interactions in 3D and‘2D’magnets 6.3.3 Magnetic surface techniques 6.3.4 Theories andapplications ofsurface magnetism Further reading for chapter 6 Problems and projects for,chapter 6 Chapter 7 Semiconductor surfaces and interfaces 7.1 StructuraI and electronic etfects at semiconductor surfaces 7.1.1 Bonding in diamond,graphite Si,Ge,GaAs,etc. 7.1.2 Simple concepts versus detailed computations 7.1.3 Tight-bindingpseudopotentialandab initio models 7.2 Case studies of reconstructed semiconductor surfaces 7.2.1 GaAs(110).a charge-neutralsurface 7.2.2 GaAs(111).apolar surface 7.2.3 SiandGe(111):whyarethey sodifferent? 7.2.4 Si,Ge and GaAs(001).steps andgrowth 7.3 Stresses and strains in semiconductor film growth 7.3.1 Thermodynamic and elasticity studies ofsurffces 7.3.2 Growth on Si(001) 7.3.3 Strained layer epitaxy:GelSi(001)and SilGe(001) 7.3.4 Growth of compound semiconductors Further reading for chapter 7 Problems and projects for chapter 7 Chapter 8 Surface processes in thin film devices 8.1 Metals and oxides in contact with semiconductors 8.1.1 Band bending and rectifying contacts at semiconductor surfaces 8.1.2 SimplemodeIs ofthedepletion region 8.1.3 Techniquesfor analyzing semiconductor interfaces 8.2 Semiconductor heterojunctions and devices 8.2.1 origtns of Schottky barrier heights 8.2.2 Semiconductor heterostructures and band offsets 8.2.3 Opto.electronic devices and‘band-gap engineering’ 8.2.4 Modulation and&doping,strainedlayers,quantumwiresanddots 8.3 Conduction processes in thin film devices 8.3.1 Conductivity,resistivity and the relaxation time 8.3.2 Scattering at surfaces and interfaces in nanostructures 8.3.3 Spin dependent scattering and magnetic multilayer devices 8.4 Chemical routes to manufacturing 8.4.1 Synthetic chemistry and manufacturing:the case of Si-Ge—C 8.4.2 Chemical routes to opto.electronics and/or nano-magnetics 8.4.3 Nanotubes and thefuture offlat panel TV 8.4.4 Combinatoriaf materiaIs development and analysis Further reading for chapter 8 Chapter 9 Postscript—where do we go from here? 9.1 Electromigration and other degradation effects in nanostructures 9.2 What do the various disciplines bring to the table? 9.3 What has been left ouL"fulure sources ofinformation Appendix A Bibliography Appendix B List of acronyms Appendix C Units and conversion factors Appendix D Resources on the web or CD-ROM Appendix E Useful thermodynamic relationships Appendix F Conductances and pumping speeds,C and S Appendix G Materials for use in ultra-high vacuum Appendix H UHV component cleaning procedures Appendix J An outline of local density methods Appendix K An outline of tight binding models References Index |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。