《变分分析》从该理论的最初起源——积分函数的最小化开始,对该理论做了较深的讨论。变分观点的发展很大程度上和优化、平衡、控制这些理论是紧密相关的。书中在一个统一的框架之中,全面讲述了经典分析和凸分析之外的变分几何和次微积分知识。也讲述了集收敛、集值映射和epi收敛、对偶和正则被积函数。本书由洛克菲勒著。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略 音乐专区
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。
| 电子书 | 变分分析 |
| 分类 | 电子书下载 |
| 作者 | (美)洛克菲勒 |
| 出版社 | 世界图书出版公司 |
| 下载 |
|
| 介绍 |
编辑推荐 《变分分析》从该理论的最初起源——积分函数的最小化开始,对该理论做了较深的讨论。变分观点的发展很大程度上和优化、平衡、控制这些理论是紧密相关的。书中在一个统一的框架之中,全面讲述了经典分析和凸分析之外的变分几何和次微积分知识。也讲述了集收敛、集值映射和epi收敛、对偶和正则被积函数。本书由洛克菲勒著。 目录 Chapter 1. Max and Min A. Penalties and Constraints B. Epigraphs and Semicontinuity C. Attainment of a Minimum D. Continuity, Closure and Growth E. Extended Arithmetic F. Parametric Dependence G. Moreau Envelopes H. Epi-Addition and Epi-Multiplication I*. Auxiliary Facts and Principles Commentary Chapter 2. Convexity A. Convex Sets and Functions B. Level Sets and Intersections C. Derivative Tests D. Convexity in Operations E. Convex Hulls F. Closures and Contimuty G.* Separation H* Relative Interiors I* Piecewise Linear Functions J* Other Examples Commentary Chapter 3. Cones and Cosmic Closure A. Direction Points B. Horizon Cones C. Horizon Functions D. Coercivity Properties E* Cones and Orderings F* Cosmic Convexity G* Positive Hulls Commentary Chapter 4. Set Convergence A. Inner and Outer Limits B. Painleve-Kuratowski Convergence C. Pompeiu-Hausdorff Distance D. Cones and Convex Sets E. Compactness Properties F. Horizon Limits G* Contimuty of Operations H* Quantification of Convergence I* Hyperspace Metrics Commentary Chapter 5. Set-Valued Mappings A. Domains, Ranges and Inverses B. Continuity and Semicontimuty C. Local Boundedness D. Total Continuity E. Pointwise and Graphical Convergence F. Equicontinuity of Sequences G. Continuous and Uniform Convergence H* Metric Descriptions of Convergence I* Operations on Mappings J* Generic Continuity and Selections Commentary . Chapter 6. Variational Geometry A. Tangent Cones B. Normal Cones and Clarke Regularity C. Smooth Manifolds and Convex Sets D. Optimality and Lagrange Multipliers E. Proximal Normals and Polarity F. Tangent-Normal Relations G* Recession Properties H* Irregularity and Convexification I* Other Formulas Commentary Chapter 7. Epigraphical Limits A. Pointwise Convergence B. Epi-Convergence C. Continuous and Uniform Convergence D. Generalized Differentiability E. Convergence in Minimization F. Epi-Continuity of Function-Valued Mappings G. Continuity of Operations H* Total Epi-Convergence I* Epi-Distances J* Solution Estimates Commentary Chapter 8. Subderivatives and Subgradients A. Subderivatives of Functions B. Subgradients of Functions C. Convexity and Optimality D. Regular Subderivatives E. Support Functions and Subdifferential Duality F. Calmness G. Graphical Differentiation of Mappings H* Proto-Differentiability and Graphical Regularity I* Proximal Subgradients J* Other Results Commentary Chapter 9. Lipschitzian Properties A. Single-Valued Mappings B. Estimates of the Lipschitz Modulus C. Subdifferential Characterizations D. Derivative Mappings and Their Norms E. Lipschitzian Concepts for Set-Valued Mappings …… Chapter 10. Subdifferential Calculus Chapter 11. Dualization Chapter 12. Monotone Mappings Chapter 13. Second-Order Theory Chapter 14. Measurability |
| 截图 | |
| 随便看 |
|
免责声明
本网站所展示的内容均来源于互联网,本站自身不存储、不制作、不上传任何内容,仅对网络上已公开的信息进行整理与展示。
本站不对所转载内容的真实性、完整性和合法性负责,所有内容仅供学习与参考使用。
若您认为本站展示的内容可能存在侵权或违规情形,请您提供相关权属证明与联系方式,我们将在收到有效通知后第一时间予以删除或屏蔽。
本网站对因使用或依赖本站信息所造成的任何直接或间接损失概不承担责任。联系邮箱:101bt@pm.me