向量微积分豆瓣PDF电子书bt网盘迅雷下载电子书下载-霍普软件下载网

网站首页   软件下载   游戏下载   翻译软件   电子书下载   电影下载   电视剧下载   教程攻略   音乐专区

请输入您要查询的图书:

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

电子书 向量微积分
分类 电子书下载
作者 (英)马修斯
出版社 世界图书出版公司
下载 暂无下载
介绍
编辑推荐

Vector calculus is the fundamental language of mathematical physics.It provides a way to describe physical quantities in three-dimensional space and the way in which these quantities vary.Many topics in the physical sciences can be analysed mathematically using the techniques of vector calculus.These topics include fluid dynamics,solid mechanics and electromagnetism,all of which involve a description of vector and scalar quantities in three dimensions.

This book assumes no previous knowledge of vectors.However,it is assumed that the reader has a knowledge of basic calculus,including differentiation,integration and partial differentiation.Some knowledge of linear algebra is also required,particularly the concepts of matrices and determinants.

目录

1.Vector Algebra

 1.1 Vectors and scalars

1.1.1 Definition of a vector and a scalar

1.1.2 Addition of vectors

1.1.3 Components of a vector

 1.2 Dot product

1.2.1 Applications of the dot product

 1.3 Cross product

  1.3.1 Applications of the cross product

  1.4 Scalar triple product

1.5 Vector triple product

  1.6 Scalar fields and vector fields

2.Line,Surface and Volume Integrals

 2.1 Applications and methods of integration

2.1.1 Examples of the use of integration

  2.1.2 Integration by substitution

  2.1.3 Integration by parts

 2.2 Line integrals

  2.2.1 Introductory example: work done against a force

2.2.2 Evaluation of line integrals

2.2.3 Conservative vector fields

2.2.4 Other forms of line integrals

 2.3 Surface integrals

2.3.1 Introductory example:flow through a pipe

2.3.2 Evaluation of surface integrals

2.3.3 0lther forms of surface integrals

 2.4 volume integrals

  2.4.1 Introductory example:mass of an object with variable density

  2.4.2 Evaluation of volume integrals

3.Gradient,Divergence and Curl

 3.1 Partial difierentiation and Taylor series

3.1.1 Partial difierentiation

3.1.2 Taylor series in more than one variable

 3.2 Gradient of a scalar field

3.2.1 Gradientsconservative fields and potentials

3.2.2 Physical applications of the gradient

 3.3 Divergence of a vector field

3.3.1 Physical interpretation of divergence

3.3.2 Laplacian of a scalar field

 3.4 Cllrl of a vector field

  3.4.1 Physical interpretation of curl

  3.4.2 Relation between curl and rotation

  3.4.3 Curl and conservative vector fields

4.Suffix Notation and its Applications

 4.1 Introduction to suffix notation

 4.2 The Kronecker delta

 4.3 The alternating tensor

 4.4 Relation between ijk and ij

 4.5 Grad,div and curl in suffix notation

 4.6 Combinations of grad,div and curl

 4.7 Grad,div and curl applied to products of functions

5.Integral Theorems

 5.1 Divergence theorem

5.1.1 C:onservation of mass for a fluid

5.1.2 Applications ofthe divergence theorem

5.1.3 Related theorems linking surface and volume integrals

 5.2 Stokes'S theorem

5.2.1 Applications of Stokes'S theorem

5.2.2 Related theorems linking line and surface integrals

6.Curvilinear Coordinates

 6.1 Orthogonal curvilinear coordinates

 6.2 Grad,div and curl in orthogonal curvilinear coordinate systems

6.2.1 Gradient

6.2.2 Divergence

6.2.3 Curl

 6.3 Cylindrical polar coordinates

 6.4 Spherical polar coordinates

7.Cartesian Tensors

 7.1 Coordinate transformations

 7.2 Vectors and scalars

 7.3 Tensors

7.3.1 The quotient rule

7.3.2 Symmetric and anti-symmetric tensors

7.3.3 Isotropic tensors

 7.4 Physical examples of tensors

7.4.1 Ohm's law

7.4.2 The inertia tensor

8.Applications of Vector Calculus

 8.1 Heat transfer

 8.2 Electromagnetism

8.2.1 Electrostatics

8.2.2 Electromagnetic waves in a vacuum

 8.3 Continuum mechanics and the stress tensor

 8.4 Solid mechanics

 8.5 Fluid mechanics

8.5.1 Equation of motion for a fluid

8.5.2 The vorticity equation

8.5.3 Bernoulli's equation

Solutions

Index

截图
随便看

免责声明
本网站所展示的内容均来源于互联网,本站自身不存储、不制作、不上传任何内容,仅对网络上已公开的信息进行整理与展示。
本站不对所转载内容的真实性、完整性和合法性负责,所有内容仅供学习与参考使用。
若您认为本站展示的内容可能存在侵权或违规情形,请您提供相关权属证明与联系方式,我们将在收到有效通知后第一时间予以删除或屏蔽。
本网站对因使用或依赖本站信息所造成的任何直接或间接损失概不承担责任。联系邮箱:101bt@pm.me