一种推导广义软件度量模型的方法(理论与实验)(英文版)豆瓣PDF电子书bt网盘迅雷下载电子书下载-霍普软件下载网

网站首页   软件下载   游戏下载   翻译软件   电子书下载   电影下载   电视剧下载   教程攻略   音乐专区

请输入您要查询的图书:

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

电子书 一种推导广义软件度量模型的方法(理论与实验)(英文版)
分类 电子书下载
作者 陈嘉贤
出版社 暨南大学出版社
下载 暂无下载
介绍
编辑推荐

This book dilates on its underlying research which aimed to innovate a new general methodology for deriving generalised software metrics models from past empirical software metrics data. These generalised software metrics models are to predict the target software metric(s) of anyJuture software project from the project's predictor software metric(s) always in a best-effort, best-accuracy and best-consistency manner whether all, only some or even none of these required predictor software metric(s) is~are available for that future project and or projects in the past empirical software metrics data. A software project's predictor software metric(s) indicate(s) or measure(s) the project's relevant software engineering factor(s).

目录

Foreword

Table of Contents

List of Illustrations

List of Tables

Acknowledgements

Abbreviations

1 Introduction

 1.1 Software Metrics

 1.2 Software Metrics Models

 1.3 Importance of Software Metrics Models

 1.4 Existing Software Metrics Models

 1.4.1 Function Point Analysis

 1.4.2 Inferential Statistics

 1.4.3 Neural Networks

 1.4.4 Fuzzy Logic Systems

 1.4.5 Hybrid Neuro-fuzzy Systems

 1.4.6 Rule-based Systems

 1.4.7 Case-based Reasoning

 1.4.8 Regression and Classification Trees

 1.5 Generalised versus Existing Software Metrics Models

 1.5.1 For Developers of Software Metrics Models

 1.5.2 For End-users of Software Metrics Models

 1.6 Overview of the Approach of this Research

2 Terminologies and Typography

 2.1 Terminologies

 2.2 Typography

 3 The Objectives of the Research

4 Summary of the General Methodology Innovated in this Research

5 Theories Underlying the General Methodology Innovated in this Research

 5.1 The "EM Algorithm for the General Location Model".

 5.1.1 Theory

 5.1.2 Application to this General Methodology

 5.1.3 What Ifa Future Project Has No Missing Values

 5.2 Transformation on the Continuous Software Metrics and Testing Multivariate Normality.

 5.2.1 Power Transformations on Individual Continuous Software Metrics

 5.2.2 Testing Univariate Normality of the Individual Continuous Variables

 5.2.3 Testing Multivariate Normality of the Continuous Variables

 5.3 Detection and Elimination of the Multivariate Outlier(s) in Respect of the Continuous Variables

 5.3.1 Theory

 5.3.2 Application to this General Methodology

 5.4 Linear LS Regression of Each Continuous Independent Variable on All Other Continuous Independent Variable(s)

 5.4.1 Theory

 5.4.2 Application to this General Methodology

 5.5 Coefficient of Determination R2 for the Linear LS Regression of the Dependent Variable on the Continuous Independent Variable(s)

 5.5.1 Theory

 5.5.2 Application to this General Methodology

 5.6 Data Splitting, Mean Magnitude of Relative Error and Pred

 5.6. l Theory

 5.6.2 Application to this General Methodology

 5.7 The Bootstrap Method

 5.7.1 Bootstrap Procedures

 5.7.2 Bootstrap Analysis

 5.7.3 Confidence Intervals

 5.7.4 Test of Hypotheses

 5.8 Plots of the Residuals versus the Predicted Dependent Variable

6 Findings and Results

 6. l Stage 1 : Data Sourcing

 6.1.1 Data Sources

 6.1.2 ISBSG

 6.1.3 Content of the ISBSG 6 Data

 6.2 Stage 2: Rectification of Software Metrics Data

 6.2.1 Shortlisting Software Metrics

 6.2.2 "Filtering" Software Projects

 6.2.3 Transformation on the Continuous Software Metrics and Testing Multivariate Normality

 6.2.4 Detection and Elimination of the Multivariate Outlier(s) in Respect of the Continuous Variables

 6.3 Stage 3: Constructing the Candidate Models

 6.3.1 For the Intended Model with the PDR as the Target Metric

 6.3.2 For the Intended Model with the "Summary Work Effort" as the Target Metric

 6.4 Stage 4: Selecting and Optimising Candidate Models

 6.4.1 For the Intended Model with the PDR as the Target Metric 1

 6.4.2 For the Intended Model with the "Summary Work Effort" as the Target Metric

 6.5 Stage 5: Analysis of Software Engineering Factors

 6.5.1 For the Intended Model with the PDR as the Target Metric

 6.5.2 For the Intended Model with the "Summary Work Effort" as the Target Metric

7 Discussion on the Findings and Results

 7.1 Limitations of the Findings and Results

 7.1.1 Unavoidably Biased Sampling

 7.1.2 Unavailability of"Ideal" Software Metrics

 7.1.3 Evolving Software Engineering/Development Technologies, Tools and Equipment

 7.1.4 Extrapolation

 7.1.5 No Causality Relationship Established

 7.2 Comparision between the Existing Software Metrics Models and Generalised Models

 7.2.1 Empirical Prediction Accuracy and Consistency of the Existing Software Metrics Models

 7.2.2 Empirical Prediction Accuracy and Consistency of the Generalised Models

 7.2.3 Summarising the Comparison

 7.3 Foreseeable Improvement Areas for the GeneralisedModels of this Research

 7.3.1 Complexity Measurement

 7.3.2 Number of Bootstrap Samples

 7.4 Other Comments on the Generalised Models

8 Conclusion

Appendix A The Sweep Operator

Appendix B Listing of the Scripts Implemented in this Research

B.1 The Script "MultiVarNorm.SBS" to Test Multivariate Normality of the Continuous Variables

B.2 The Script "LMSSwMD.SBS" to Detect and Eliminate the Multivariate Outlier(s)

B.3 The Script "EMContCatSwMD2.SBS" of Functions Subsidiary to the Scripts "EMContCatSwMDAcc.SBS" and "EMCont CatSw MDConflnt. SBS".

B.4 The Script "EMContCatSwMD3.SBS" of Functions Subsidiary to "EMContCatSwMD2.SBS," "EMContCatSwMDAcc.SBS" and "LSLMSSwMDAcc.SBS".

B.5 The Script "EMContCatSwMDAcc.SBS" to Construct the Candidate and "Prospective" Optirnised Models through the "EM Algorithm for the General Location Model".

B.6 The Script "EMContCatSwMDConflnt.SBS" to Optimise the "Winning" Candidate Models

B.7 The Script "LSLMSSwMDAcc.SBS" to Construct Software Metrics Models through the Linear LS and Linear LMS Regressions

References

截图
随便看

免责声明
本网站所展示的内容均来源于互联网,本站自身不存储、不制作、不上传任何内容,仅对网络上已公开的信息进行整理与展示。
本站不对所转载内容的真实性、完整性和合法性负责,所有内容仅供学习与参考使用。
若您认为本站展示的内容可能存在侵权或违规情形,请您提供相关权属证明与联系方式,我们将在收到有效通知后第一时间予以删除或屏蔽。
本网站对因使用或依赖本站信息所造成的任何直接或间接损失概不承担责任。联系邮箱:101bt@pm.me