戈卢布、范洛恩编者的这本《矩阵计算(英文版第4版)》国际上关于数值线性代数方面最权威、最全面的一本专著,被美国加州大学、斯坦福大学、华盛顿大学、芝加哥大学、中国科学院研究生院等众多世界知名学府用作相关课程教材或主要参考书。
书中系统介绍了矩阵计算的基本理论和方法,提及的许多算法都有现成的软件包实现。每节后附有习题,并给出了大量注释和参考文献,有助于读者自学和巩固正文内容。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略 音乐专区
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。
| 电子书 | 矩阵计算(英文版第4版)/图灵原版数学统计学系列 |
| 分类 | 电子书下载 |
| 作者 | (美)戈卢布//范洛恩 |
| 出版社 | 人民邮电出版社 |
| 下载 |
|
| 介绍 |
编辑推荐 戈卢布、范洛恩编者的这本《矩阵计算(英文版第4版)》国际上关于数值线性代数方面最权威、最全面的一本专著,被美国加州大学、斯坦福大学、华盛顿大学、芝加哥大学、中国科学院研究生院等众多世界知名学府用作相关课程教材或主要参考书。 书中系统介绍了矩阵计算的基本理论和方法,提及的许多算法都有现成的软件包实现。每节后附有习题,并给出了大量注释和参考文献,有助于读者自学和巩固正文内容。 内容推荐 戈卢布、范洛恩编者的这本《矩阵计算(英文版第4版)》是数值计算领域的名著,系统介绍了矩阵计算的基本理论和方法。内容包括:矩阵乘法、矩阵分析、线性方程组、正交化和最小二乘法、特征值问题、Lanczos方法、矩阵函数及专题讨论等。书中的许多算法都有现成的软件包实现,每节后附有习题,并有注释和大量参考文献。新版增加约四分之一内容,反映了近年来矩阵计算领域的飞速发展。 《矩阵计算(英文版第4版)》可作为高等院校数学系高年级本科生和研究生教材,亦可作为计算数学和工程技术人员参考书。 目录 1 Matrix Multiplication 1.1 Basic Algorithms and Notation 1.2 Structure and Efficiency 1.3 Block Matrices and Algorithms 1.4 Fast Matrix-Vector Products 1.5 Vectorization and Locality 1.6 Parallel Matrix Multiplication 2 Matrix Analysis 2.1 Basic Ideas from Linear Algebra 2.2 Vector Norms 2.3 Matrix Norms 2.4 The Singular Value Decomposition 2.5 Subspace Metrics 2.6 The Sensitivity of Square Systems 2.7 Finite Precision Matrix Computations 3 General Linear Systems 3.1 Triangular Systems 3.2 The LU Factorization 3.3 Roundoff Error in Gaussian Elimination 3.4 Pivoting 3.5 Improving and Estimating Accuracy 3.6 Parallel LU 4 Special Linear Systems 4.1 Diagonal Dominance and Symmetry 4.2 Positive Definite Systems 4.3 Banded Systems 4.4 Symmetric Indefinite Systems 4.5 Block Tridiagonal Systems 4.6 Vandermonde Systems 4.7 Classical Methods for Toeplitz Systems 4.8 Circulant and Discrete Poisson Systems 5 Orthogonalization and Least Squares 5.1 Householder and Givens Transformations 5.2 The QR Factorization 5.3 The Full-Rank Least Squares Problem 5.4 Other Orthogonal Factorizations 5.5 The Rank-Deficient Least Squares Problem 5.6 Square and Underdetermined Systems 6 Modified Least Squares Problems and Methods 6.1 Weighting and Regularization 6.2 Constrained Least Squares 6.3 Total Least Squares 6.4 Subspace Computations with the SVD 6.5 Updating Matrix Factorizations 7 Unsymmetric Eigenvalue Problems 7.1 Properties and Decompositions 7.2 Perturbation Theory 7.3 Power Iterations 7.4 The Hessenberg and Real Schur Forms 7.5 The Practical QR Algorithm 7.6 Invariant Subspace Computations 7.7 The Generalized Eigenvalue Problem 7.8 Hamiltonian and Product Eigenvalue Problems 7.9 Pseudospectra 8 Symmetric Eigenvalue Problems 8.1 Properties and Decompositions 8.2 Power Iterations 8.3 The Symmetric QR Algorithm 8.4 More Methods for Tridiagonal Problems 8.5 Jacobi Methods 8.6 Computing the SVD 8.7 Generalized Eigenvalue Problems with Symmetry 9 Functions of Matrices 9.1 Eigenvalue Methods 9.2 Approximation Methods 9.3 The Matrix Exponential 9.4 The Sign, Square Root, and Log of a Matrix 10 Large Sparse Eigenvalue Problems 10.1 The Symmetric Lanczos Process 10.2 Lanczos, Quadrature, and Approximation 10.3 Practical Lanczos Procedures 10.4 Large Sparse SVD Frameworks 10.5 Krylov Methods for Unsymmetric Problems 10.6 Jacobi-Davidson and Related Methods 11 Large Sparse Linear System Problems 11.1 Direct Methods 11.2 The Classical Iterations 11.3 The Conjugate Gradient Method 11.4 Other Krylov Methods 11.5 Preconditioning 11.6 The Multigrid Framework 12 Special Topics 12.1 Linear Systems with Displacement Structure 12.2 Structured-Rank Problems 12.3 Kronecker Product Computations 12.4 Tensor Unfoldings and Contractions 12.5 Tensor Decompositions and Iterations Index |
| 截图 | |
| 随便看 |
|
免责声明
本网站所展示的内容均来源于互联网,本站自身不存储、不制作、不上传任何内容,仅对网络上已公开的信息进行整理与展示。
本站不对所转载内容的真实性、完整性和合法性负责,所有内容仅供学习与参考使用。
若您认为本站展示的内容可能存在侵权或违规情形,请您提供相关权属证明与联系方式,我们将在收到有效通知后第一时间予以删除或屏蔽。
本网站对因使用或依赖本站信息所造成的任何直接或间接损失概不承担责任。联系邮箱:101bt@pm.me