高维数据分析(精)豆瓣PDF电子书bt网盘迅雷下载电子书下载-霍普软件下载网

网站首页   软件下载   游戏下载   翻译软件   电子书下载   电影下载   电视剧下载   教程攻略   音乐专区

请输入您要查询的图书:

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

电子书 高维数据分析(精)
分类 电子书下载
作者 蔡天文//沈晓彤
出版社 高等教育出版社
下载 暂无下载
介绍
编辑推荐

This book intends to examine important issues arising from high-dimensional data analysis to explore key ideas for statistical inference and prediction.It is structured around topics on multiple hypothesis testing, feature selection, regression, classification, dimension reduction, as well as applications in survival analysis and biomedical research.The book will appeal to graduate students and new researchers interested in the plethora of opportunities available in high-dimensional data analysis.

目录

Preface

Part Ⅰ High-Dimensional Classification

 Chapter 1 High-Dimensional Classification Jianqing Fan, Yingying Fan and Yichao Wu

1 Introduction

2 Elements of classifications

3 Impact of dimensionality on classification

4 Distance-based classification Rules

5 Feature selection by independence rule

6 Loss-based classification

7 Feature selection in loss-based classification

8 Multi-category classification

References

 Chapter 2 Flexible Large Margin Classifiers Yufeng Liu and Yichao Wu

1 Background on classification

2 The support vector machine: the margin formulation and the SV interpretation

3 Regularization framework

4 Some extensions of the SVM: Bounded constraint machine and the balancing SVM

5 Multicategory classifiers

6 Probability estimation

7 Conclusions and discussions

References

Part Ⅱ Large-Scale Multiple Testing

 Chapter 3 A Compound Decision-Theoretic Approach to Large-Scale Multiple Testing T. Tony Cai and Wenguang Sun

1 Introduction

2 FDR controlling procedures based on p-values

3 Oracle and adaptive compound decision rules for FDR control

4 Simultaneous testing of grouped hypotheses

5 Large-scale multiple testing under dependence

6 Open problems

References

Part Ⅲ Model Building with Variable Selection

 Chapter 4 Model Building with Variable Selection Ming Yuan

1 Introduction

2 Why variable selection

3 Classical approaches

4 Bayesian and stochastic search

5 Regularization

6 Towards more interpretable models

7 Further readings

References

 Chapter 5 Bayesian Variable Selection in Regression with Networked Predictors Feng Tai, Wei Pan and Xiaotong Shen

1 Introduction

2 Statistical models

3 Estimation

4 Results

5 Discussion

References

Part Ⅳ High-Dimensional Statistics in Genomics

 Chapter 6 High-Dimensional Statistics in Genomics Hongzhe Li

1 Introduction

2 Identification of active transcription factors using time-course gene expression data

3 Methods for analysis of genomic data with a graphical structure..

4 Statistical methods in eQTL studies

5 Discussion and future direction

References

 Chapter 7 An Overview on Joint Modeling of Censored Survival Time and Longitudinal Data

Runze Li and Jian-Jian Ren

1 Introduction

2 Survival data with longitudinal covariates

3 Joint modeling with right censored data

4 Joint modeling with interval censored data

5 Further studies

References

Part Ⅴ Analysis of Survival and Longitudinal Data

 Chapter 8 Survival Analysis with High-Dimensional Covariates Bin Nan

1 Introduction

2 Regularized Cox regression

3 Hierarchically penalized Cox regression with grouped variables ...

4 Regularized methods for the accelerated failure time model

5 Tuning parameter selection and a concluding remark

References

Part Ⅵ  Sufficient Dimension Reduction in Regression

 Chapter 9 Sufficient Dimension Reduction in Regression Xiangrong Yin

1 Introduction

2 Sufficient dimension reduction in regression

3 Sufficient variable selection (SVS)

4 SDR for correlated data and large-p-small-n

5 Further discussion

References

 Chapter 10 Combining Statistical Procedures Lihua Chen and Yuhong Yang

1 Introduction

2 Combining for adaptation

3 Combining procedures for improvement

4 Concluding remarks

References

Subject Index

Author Index

截图
随便看

免责声明
本网站所展示的内容均来源于互联网,本站自身不存储、不制作、不上传任何内容,仅对网络上已公开的信息进行整理与展示。
本站不对所转载内容的真实性、完整性和合法性负责,所有内容仅供学习与参考使用。
若您认为本站展示的内容可能存在侵权或违规情形,请您提供相关权属证明与联系方式,我们将在收到有效通知后第一时间予以删除或屏蔽。
本网站对因使用或依赖本站信息所造成的任何直接或间接损失概不承担责任。联系邮箱:101bt@pm.me