网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 信息时代的计算机科学理论(英文版)/交大致远教材系列
分类 教育考试-考试-计算机类
作者 (美)约翰·霍普克罗夫特//拉文德兰·坎南
出版社 上海交通大学出版社
下载
简介
目录

1 Introduction

2 High-Dimensional Space

2.1 Properties of High-Dimensional Space

2.2 The High-Dimensional Sphere

 2.2.1 The Sphere and the Cube in Higher Dimensions

 2.2.2 Volume and Surface Area of the Unit Sphere

 2.2.3 The Volume is Near the Equator

 2.2.4 The Volume is in a Narrow Annulus

 2.2.5 The Surface Area is Near the Equator

2.3 Volumes of Other Solids

2.4 Generating Points Uniformly at Random on the Surface of a Sphere

2.5 Gaussians in High Dimension

2.6 Bounds on Tail Probability

2.7 Random Projection and the Johnson-Lindenstrauss Theorem

2.8 Bibliographic Notes

2.9 Exercises

3 Random Graphs

3.1 TheG(n, p) Model

 3.1.1 Degree Distribution

 3.1.2 Existence of Triangles in G ( n, d/n )

3.2 Phase Transitions

3.3 The Giant Component

3.4 Branching Processes

3.5 Cycles and Full Connectivity

 3.5.1 Emergence of Cycles

 3.5.2 Full Connectivity

 3.5.3 Threshold for O (Inn) Diameter

3.6 Phase Transitions for Monotone Properties

3.7 Phase Transitions for CNF-sat

3.8 Nonuniform and Growth Models of Random Graphs

 3.8.1 Nonuniform Models

 3.8.2 Giant Component in Random Graphs with Given Degree Distribution ...

3.9 Growth Models

 3.9.1 Growth Model Without Preferential Attachment

 3.9.2 A Growth Model with Preferential Attachment

3.10 Small World Graphs

3.11 Bibliographic Notes

3.12 Exercises

4 Singular Value Decomposition (SVD)

4.1 Singular Vectors

4.2 Singular Value Decomposition (SVD)

4.3 Best Rank k Approximations

4.4 Power Method for Computing the Singular Value Decomposition

4.5 Applications of Singular Value Decomposition

 4.5.1 Principal Component Analysis

 4.5.2 Clustering a Mixture of Spherical Gaussians

 4.5.3 An Application of SVD to a Discrete Optimization Problem

 4.5.4 Spectral Decomposition

 4.5.5 Singular Vectors and Ranking Documents

4.6 Bibliographic Notes

4.7 Exercises

5 Random Walks and Markov Chains

5.1 Stationary Distribution

5.2 Electrical Networks and Random Walks

5.3 Random Walks on Undirected Graphs with Unit Edge Weights

5.4 Random Walks in Euclidean Space

5.5 The Web as a Markov Chain

5.6 Markov Chain Monte Carlo

 5.6.1 Metropolis-Hasting Algorithm

 5.6.2 Gibbs Sampling

5.7 Convergence of Random Walks on Undirected Graphs

 5.7.1 Using Normalized Conductance to Prove Convergence

5.8 Bibliographic Notes

5.9 Exercises

6 Learning and VC-Dimension

6.1 Learning

6.2 Linear Separators, the Perceptron Algorithm, and Margins

6.3 Nonlinear Separators, Support Vector Machines, and Kernels

6.4 Strong and Weak Learning-Boosting

6.5 Number of Examples Needed for Prediction: VC-Dimension

6.6 Vapnik-Chervonenkis or VC-Dimension

 6.6.1 Examples of Set Systems and Their VC-Dimension

 6.6.2 The Shatter Function

 6.6.3 Shatter Function for Set Systems of Bounded VC-Dimension

 6.6.4 Intersection Systems

6.7 The VC Theorem

6.8 Bibliographic Notes

6.9 Exercises

7 Algorithms for Massive Data Problems

7.1 Frequency Moments of Data Streams

 7.1.1 Number of Distinct Elements in a Data Stream

 7.1.2 Counting the Number of Occurrences of a Given Element

 7.1.3 Counting Frequent Elements

 7.1.4 The Second Moment

7.2 Sketch of a Large Matrix

 7.2.1 Matrix Multiplication Using Sampling

 7.2.2 Approximating a Matrix with a Sample of Rows and Columns ...

7.3 Sketches of Documents

7.4 Exercises

8 Clustering

8.1 Some Clustering Examples

8.2 A Simple Greedy Algorithm for k-clustering

8.3 Lloyd's Algorithm for k-means Clustering

8.4 Meaningful Clustering via Singular Value Decomposition

8.5 Recursive Clustering Based on Sparse Cuts

8.6 Kernel Methods

8.7 Agglomerative Clustering

8.8 Communities, Dense Submatrices

8.9 Flow Methods

8.10 Linear Programming Formulation

8.11 Finding a Local Cluster Without Examining the Whole Graph

8.12 Axioms for Clustering

 8.12.1 An Impossibility Result

 8.12.2 A Satisfiable Set of Axioms

8.13 Exercises

9 Graphical Models and Belief Propagation

9.1 Bayesian or Belief Networks

9.2 Markov Random Fields

9.3 Factor Graphs

9.4 Tree Algorithms

9.5 Message Passing Algorithm

9.6 Graphs with a Single Cycle

9.7 Belief Update in Networks with a Single Loop

9.8 Maximum Weight Matching

9.9 Warning Propagation

9.10 Correlation Between Variables

9.11 Exercises

10 Other Topics

10.1 Rankings

10.2 Hare System for Voting

10.3 Compressed Sensing and Sparse Vectors

 10.3.1 Unique Reconstruction of a Sparse Vector

 10.3.2 The Exact Reconstruction Property

 10.3.3 Restricted Isometry Property

10.4 Applications

 10.4.1 Sparse Vector in Some Coordinate Basis

 10.4.2 A Representation Cannot be Sparse in Both Time and Frequency Domains

 10.4.3 Biological

 10.4.4 Finding Overlapping Cliques or Communities

 10.4.5 Low Rank Matrices

10.5 Exercises

11 Appendix

11.1 Asymptotic Notation

11.2 Useful Inequalities

11.3 Sums of Series

11.4 Probability

 11.4.1 Sample Space, Events, Independence

 11.4.2 Variance

 11.4.3 Variance of Sum of Independent Random Variables

 11.4.4 Covariance

 11.4.5 The Central Limit Theorem

 11.4.6 Median

 11.4.7 Unbiased Estimators

 11.4.8 Probability Distributions

 11.4.9 Maximum Likelihood Estimation MLE

 11.4.10 Tail Bounds

 11.4.11 Chernoff Bounds: Bounding of Large Deviations

 11.4.12 Hoeffding's Inequality

11.5 Generating Functions

 11.5.1 Generating Functions for Sequences Defined by Recurrence Relationships

 11.5.2 Exponential Generating Function

11.6 Eigenvalues and Eigenvectors

 11.6.1 Eigenvalues and Eigenvectors

 11.6.2 Symmetric Matrices

 11.6.3 Extremal Properties of Eigenvalues

 11.6.4 Eigenvalues of the Sum of Two Symmetric Matrices

 11.6.5 Norms

 11.6.6 Important Norms and Their Properties

 11.6.7 Linear Algebra

 11.6.8 Distance Between Subspaces

11.7 Miscellaneous

 11.7.1 Variational Methods

 11.7.2 Hash Functions

 11.7.3 Catalan Numbers

 11.7.4 Sperner's Lemma

11.8 Exercises

Index

References

内容推荐

《信息时代的计算机科学理论(英文版)》是交大致远教材系列之一,由约翰·霍普克罗夫特编著。

《信息时代的计算机科学理论(英文版)》简介:

Computer Science Theory for the Information Age covers the computer science theory likely to be useful in the next 40 years, including high- dimensional space, random graphs, singular value decomposition. random walks, Markov chains, learning algorithms, VC-dimension, algorithms for massive date problems, clustering. The book also covers graphical models and belief propagation, ranking and voting, sparse vectors, and compressed sensing.

The book is intended for either an undergraduate or a graduate theory course in computer science.

Prof. John Hopcroft is a world-renowned scientist and an expert on education in computer science. He was awarded the A. M. Turing Award in 1986 for his contributions in theoretical computing and data structure design. Dr. Ravindran Kannan is a principal researcher with Microsoft Research Labs located in India.

编辑推荐

《信息时代的计算机科学理论(英文版)》是上海交通大学致远教材系列之一,由国际著名计算机科学家约翰·霍普克罗夫特教授和拉文德兰·坎南教授编写。本书包含了高维空间、随机图、奇异值分解、随机行走和马尔可夫链、学习算法和VC维、大规模数据问题的算法、聚类、图形模型和置信传播等主要内容,书后有附录及索引。从第2章开始,每章后面均附有适量的练习题。

本书可作为计算机及相关专业高年级本科生或研究生的教材,也可供相关专业技术人员参考。

随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/5/5 20:50:45