乔治·劳斯特、斯蒂芬·J.瑞特著的《数值最优化(第2版影印版英文版)(精)/国外数学名著系列》作者根据在教学、研究和咨询中的经验,写了这本适合学生和实际工作者的书。本书提供连续优化中大多数有效方法的全面的新的论述。每一章从基本概念开始,逐步阐述当前可用的技术。
本书强调实用方法,包含大量图例和练习,适合广大读者阅读,可作为工程、运筹学、数学、计算机科学以及商务方面的研究生教材,也可作为该领域的科研人员和实际工作人员的手册。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略 音乐专区
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。
| 电子书 | 数值最优化(第2版影印版英文版)(精)/国外数学名著系列 |
| 分类 | 电子书下载 |
| 作者 | (美)乔治·劳斯特//斯蒂芬·J.瑞特 |
| 出版社 | 科学出版社 |
| 下载 |
|
| 介绍 |
内容推荐 乔治·劳斯特、斯蒂芬·J.瑞特著的《数值最优化(第2版影印版英文版)(精)/国外数学名著系列》作者根据在教学、研究和咨询中的经验,写了这本适合学生和实际工作者的书。本书提供连续优化中大多数有效方法的全面的新的论述。每一章从基本概念开始,逐步阐述当前可用的技术。 本书强调实用方法,包含大量图例和练习,适合广大读者阅读,可作为工程、运筹学、数学、计算机科学以及商务方面的研究生教材,也可作为该领域的科研人员和实际工作人员的手册。 目录 Preface
prefcetothe Second Edition 1 Introduction Mathematical Formulation Example:A Transportation Problem Continuous versus Discrete Optimization Constrained and Unconstrained Optimization Global and Local Optimization Stocbastic and Deterministic Optimization Convexity Optimization Algorithms Notes and References 2 Fundamentals of Unconstrained Optimization 2.1 What ls a Solution? Recognizing a Local Minimum Nonsmooth Problems 2.2 Overview of A1gorithms Two Strategies:Line Search and Trust Region Search Directions for Line Search Methods Models for Trust-Region Methods Scaling Exercises 3 Line Search Methods 3.1 Step Length The Wolfe Conditions The Goldstein Conditions Sufficient Decrease and Backtracking 3.2 Convergence of Line Search Methods 3.3 Rate of Convergence Convergence Rate of Steepest Descent Newton's Method Quasi-Newton Methods 3.4 Newton's Method with Hessian Modification Eigenvalue Modification Adding a Multiple of the ldentity Modified Cholesky Factorization Modified Symmetric Indefinite Factorization 3.5 Step-Length Selection Algorithms lnterpolation lnitial Step Length A Line Search A1gorithm for the Wolfe Conditions Notes and References Exercises 4 Trust-Region Methods Outline of the Trust-Region Approach 4.1 A1gorithms Based on the Cauchy Point The Cauchy Point lmpro时ng on the Cauchy Point The Dogleg Method Two-Dinlensional Subspace Mininlization 4.2 Global Convergence Reduction Obtained by the Cauchy Point Convergence to Stationary Points 4.3 lterative Solution of the Subproblem The Hard Case Proof of Theorem 4. Convergence of Algorithms Based on Nearly Exact Solutions 4.4 Local Convergence ofTrust-Region Newton Methods 4.5 0ther Enhancements Scaling Trust Regions in 0ther Norms Notes and References Exercises 5 Conjugate Gradient Methods 5.1 The linear Conjugate Gradient Method Conjugate Direction Methods Basic Properties of thee Conjugate Gradient Method A Practical Form of the Conjugate Gradient Method Rate of Convergence Preconditioning Practical Preconditioners 5.2 Nonlinear Conjugate Gradient Methods The Fletcher-Reeves Method The Polak-Ribière Method and Variants Quadratic Termination and Restarts Behavior of the Fletcher-Reeves Method Global Convergence Numerical Performance Notes and Reference Exercises 6 Quasi-Newton Methods 6.1 The BFGS Method Properties ofthe BFGS Method Implementation 6.2 The SR1 Method Properties of SR1 Updating 6.3 The Broyden Class 6.4 Convergence Analysis Global Convergence of the BFGS Method Superlinear Convergence of the BFGS Method Convergence Analysis of the SR1 Method Notes and References Exercises 7 Large-Scale Unconstrained optimization 7.1 lnexact Newton Methods Local Convergence of Inexact Newton Methods Line Search Newton-CG Method Trust-Region Newton-CG Method Preconditioning the Trust-Region Newton-CG Method Trust-Region Newton-Lanczos Method 7.2 Limited-Memory Quasi-Newton Methods Limited-Memory BFGS Relationship with Conjugate Gradient Methods General Lirnited:d-Memory Updatiug Compact Representation of BFGS Updating Unrolling the Update 7.3 Sparse Quasi-Newton Updates 7.4 Algorithms for Partially Separable Fnnctions 7.5 Perspectives and Sotrware Notes and References Exercises 8 Calculating Derivatives 8.1 Finite-Difference Derivative Approximations Approximating the Gradient Approximating a Sparse Jacobian Approximatiug the Hessian Approximatiug a Sparse Hessian 8.2 Automatic Differentiation Au Example The Forward Mode The Reverse Mode Ve |
| 截图 | |
| 随便看 |
|
免责声明
本网站所展示的内容均来源于互联网,本站自身不存储、不制作、不上传任何内容,仅对网络上已公开的信息进行整理与展示。
本站不对所转载内容的真实性、完整性和合法性负责,所有内容仅供学习与参考使用。
若您认为本站展示的内容可能存在侵权或违规情形,请您提供相关权属证明与联系方式,我们将在收到有效通知后第一时间予以删除或屏蔽。
本网站对因使用或依赖本站信息所造成的任何直接或间接损失概不承担责任。联系邮箱:101bt@pm.me