网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略 音乐专区
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。
| 电子书 | 非线性波数学物理学入门(英文版)/国外优秀物理著作原版系列 |
| 分类 | 电子书下载 |
| 作者 | (加)藤本实 |
| 出版社 | 哈尔滨工业大学出版社 |
| 下载 |
|
| 介绍 |
内容推荐 本书是为高年级本科生和研究生编写的,是一本关于非线性物理学的升级物理课程的教科书。尽管如此,非线性数学仍以双曲函数和椭圆函数为主导。本书共十章,用非齐次微分方程来分析非线性问题获得的相关信息,主要内容包括:经典力学中的非线性特征、波传播、奇异性与边界、孤立子与绝热势、结构相变、非线性波、散射理论、逆散射法、准静态孤子态、贝可隆变换与正弦-戈登方程等。本书还回顾了物理实践中的代表性案例,然后通过一般理论进行了应用。 目录 1 Nonlinearity in classical mechanics
1.1 A pendulum 1.1.1 Oscillation 1.1.2 Vertical rotation 1.2 Vibration by a nonlinear spring force 1.3 A jumping rope 1.4 Hyperbolic and elliptic functions 1.4.1 Definitions 1.4.2 Differentiation 1.4.3 Reverse functions cn-1 and dn-1 1.4.4 Periodicity of Jacobi's sn-function 1.5 Variation principle 1.6 Buckling deformation of a rod Exercise 2 Wave propagation, singularities and boundaries 2.1 Elastic waves along a linear string of infinite length 2.1.1 Phase of propagation 2.1.2 Energy flow 2.1.3 Scattering by an oscillator 2.2 Microwave transmission 2.3 Schr6dinger's equation 2.4 Scattering by the potential V(x) = Vo sech2 x 2.5 Two-dimensional waves in inhomogeneous medium 2.6 Sound propagation in air Exercises 3 Solitons and adiabatic potentials 3.t The Korteweg-deVries equation 3.2 Steady solutions of the Korteweg~teVries equation 3.3 Developing equations of nonlinear vector waves 3.4 Bargmann's theorem 3.4.1 One-soliton solution 3.4.2 Two-soliton solution 3.5 Riccati's theorem 3.6 Properties of the Eckart potential in the soliton field 3.7 Zabusky-Kruskal's computational analysis Exercises 4 Structural phase transitions 4.1 Initial uncertainties and transition anomalies 4.1.1 Specific heat anomalies 4.1.2 Landau's theory 4.2 Dynamical theory of collective motion 4.2.1 Longitudinal waves 4.2.2 Transverse waves 4.3 Pseudopotential and sine-Gordon equation Exercises 5 Nonlinear waves 5.1 Elemental waves 5.2 Matrix formulation for nonlinear development 5.3 Heat dissipation of wave motion 5.4 Born-Huang transitions in crystals 5.5 Symmetry of media for the Korteweg~teVries equation 5.6 Soliton description Exercise 6 Scattering theory 6.1 One-component waves 6.1.1 Scatterings of elemental waves 6.1.2 Singularity of a soliton potential 6.2 Two-component scatterings 6.2.1 A two-component wave 6.2.2 Reflection and transmission 6.2.3 Poles of transmission and reflection coefficients 6.2.4 Soliton potentials 6.2.5 Asymptotic expansion Exercises 7 Method of inverse scatterings 7.1 Coherent wave packets and Marchenko's equation 7.1.1 Delta and truncated step functions for coherent wave packets 7.1.2 Fourier transforms and Marchenko's equations 7.2 Reflectionless multi-soliton potentials 7.3 Two-component systems 7.3.1 Inverse scatterings 7.3.2 Matrix method 7.3.3 Modified Korteweg-deVries equation, part 1 Exercises 8 Quasi-static soliton states 8.1 Developing the Korteweg-deVries equation 8.1.1 N onstationary states 8.1.2 Thermal perturbation 8.2 Multi-soliton potentials in unsteady states 8.3 The modified Korteweg-deVries equation, part 2 8.4 Thermodynamic instability and Breezer potentials 8.5 The third-order Schrodinger equation Exercises 9 The Baicklund transformation and sine-Gordon equations 9.1 The Klein-Gordon equation 9.2 The Backlund transformation 9.3 The sine-Gordon equation 9.4 Numerical analysis of the sine-Gordon equation 9.5 Inverse scatterings and the Backlund transformation 9.6 Scatterings by a pseudopotential 10 Miscellaneous applications 10.1 Surface waves 10.1.1 The first approximation 10.1.2 The second approximation 10.2 Vortex motion in fluid media 10.2.1 A vortex 10.2.2 Vortex motion 10.3 Plasma oscillation 10.4 Laser light transmission through absorbing media 10.4 . l Two-level atom in an intense radiation field 10.4.2 Scattering of intense radiation t0.4.3 Sine-Gordon limit 10.5 Periodic lattices 10.5.1 Toda's lattice 10.5.2 Aperiodic transitions by pseudopotentials 编辑手记 |
| 截图 | |
| 随便看 |
免责声明
本网站所展示的内容均来源于互联网,本站自身不存储、不制作、不上传任何内容,仅对网络上已公开的信息进行整理与展示。
本站不对所转载内容的真实性、完整性和合法性负责,所有内容仅供学习与参考使用。
若您认为本站展示的内容可能存在侵权或违规情形,请您提供相关权属证明与联系方式,我们将在收到有效通知后第一时间予以删除或屏蔽。
本网站对因使用或依赖本站信息所造成的任何直接或间接损失概不承担责任。联系邮箱:101bt@pm.me