智能优化(英文版)豆瓣PDF电子书bt网盘迅雷下载电子书下载-霍普软件下载网

网站首页   软件下载   游戏下载   翻译软件   电子书下载   电影下载   电视剧下载   教程攻略   音乐专区

请输入您要查询的图书:

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

电子书 智能优化(英文版)
分类 电子书下载
作者 李长河
出版社 中国地质大学出版社
下载 暂无下载
介绍
内容推荐
本书分两部分,第一部分介绍基本的智能优化方法,包括传统的启发式搜索算法以及以演化算法为代表的群智能搜索方法;第二部分介绍演化优化领域常见的优化问题,包括多模优化,多目标优化,约束优化,动态优化,鲁棒优化等,以及实际生产生活中的优化实例。本书知识点新,展现智能优化的发展过程与趋势,选用了当前该领域最新的研究成果。
目录
Part I The Basics
1 Introduction
1.1 Optimization and Machine Learning
1.2 Optimization Problems
1.2.1 Mathematical Formulation
1.2.2 Continuous Optimization versus Discrete Optimization
1.3 Optimization Algorithms
1.3.1 Deterministic Algorithms and Probabilistic Algorithms
1.3.2 Intelligent Optimization Techniques
2 Fundamentals
2.1 Fitness Landscapes
2.1.1 Solution Space
2.1.2 Objective Space
2.1.3 Neighbourhood
2.1.4 Global Optimum
2.1.5 Local Optimum
2.2 Properties of Fitness Landscape
2.2.1 Modality
2.2.2 Ruggedness
2.2.3 Deceptiveness
2.2.4 Neutrality
2.2.5 Separability
2.2.6 Scalability
2.2.7 Domino convergence
2.2.8 Property Control
2.3 Computational Complexity
2.3.1 Complexity Measures
2.3.2 P Versus NP Problem
3 Canonical Optimization Algorithms
3.1 Numerical Optimization Algorithms
3.1.1 Line Search
3.1.2 Steepest Descent Method
3.1.3 Newton Method
3.1.4 Conjugate Gradient Method
3.2 State Space Search
3.2.1 State Space
3.2.2 Uninformed Search
3.2.3 Informed Search
3.3 Single-solution-based Random Search
3.3.1 Hill Climbing
3.3.2 Simulated Annealing
3.3.3 Iterated Local Search
3.3.4 Variable Neighborhood Search
4 Basics of Evolutionary Computation Algorithms
4.1 Introduction
4.1.1 Biological Evolution
4.1.2 Origin of Evolutionary Algorithms
4.1.3 Basic Evolutionary Processes
4.1.4 Developments
4.1.5 Related Resources
4.2 Solution Representation
4.2.1 Binary Representation
4.2.2 Integer Representation
4.2.3 Real-valued Representation
4.2.4 Tree Representation
4.2.5 The Effect of Representation
4.3 Selection
4.3.1 Parents Selection
4.3.2 Survivor Selection
4.3.3 Age-based Replacement
4.3.4 Fitness-based Replacement
4.3.5 Selection Pressure
4.4 Reproduction
4.4.1 Mutation
4.4.2 Recombination
5 Popular Evolutionary Computation Algorithms
5.1 Genetic Algorithms
5.1.1 Basic Principle and Framework
5.1.2 Applications of Genetic Algorithms
5.2 Evolutionary Programming
5.2.1 The Emerging of Evolutionary Programming
5.2.2 The Classical Evolutionary Programming
5.2.3 Framework and Parameter Settings
5.2.4 Recent Advances in Evolutionary Programming
5.3 Genetic Programming
5.3.1 Introduction
5.3.2 Genotype-phenotype Mapping
5.3.3 Other Genome Structures
5.3.4 Open Issues
5.4 Particle Swarm Optimization
5.4.1 The Arising of Particle Swarm Optimization
5.4.2 Original Particle Swarm Optimization
5.4.3 Standard Particle Swarm Optimization
5.4.4 Recent Advances in Particle Swarm Optimization
5.5 Differential Evolution
5.5.1 Introduction of Differential Evolution
5.5.2 Framework and Parameter Settings
5.5.3 Some Advances in Differential Evolution
5.6 Evolution Strategy
5.6.1 Basic Evolution Strategy Paradigm
5.6.2 Covariance Matrix Adaptation Evolution Strategy
5.7 Estimation of Distribution Algorithm
5.7.1 Standard Procedures
5.7.2 Discrete Versions
5.7.3 Continuous Versions
5.8 Ant Colony Optimization
5.8.1 Biological Inspiration
5.8.2 ACO framework
5.8.3 ACO Variants
5.8.4 Recent Advances
6 Parameter Control and Policy Control
6.1 Parameter Control
6.1.1 Unary Parameter Control
6.1.2 Multi-parameter Control
6.1.3 Discussions
6.2 Policy Control
6.2.1 Operator Selection Control
6.2.2 Hyper-heuristics
6.2.3 Discussions
7 Exploitation versus Explorat
截图
随便看

免责声明
本网站所展示的内容均来源于互联网,本站自身不存储、不制作、不上传任何内容,仅对网络上已公开的信息进行整理与展示。
本站不对所转载内容的真实性、完整性和合法性负责,所有内容仅供学习与参考使用。
若您认为本站展示的内容可能存在侵权或违规情形,请您提供相关权属证明与联系方式,我们将在收到有效通知后第一时间予以删除或屏蔽。
本网站对因使用或依赖本站信息所造成的任何直接或间接损失概不承担责任。联系邮箱:101bt@pm.me