伽罗瓦上同调豆瓣PDF电子书bt网盘迅雷下载电子书下载-霍普软件下载网

网站首页   软件下载   游戏下载   翻译软件   电子书下载   电影下载   电视剧下载   教程攻略   音乐专区

请输入您要查询的图书:

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

电子书 伽罗瓦上同调
分类 电子书下载
作者 (法)塞尔
出版社 世界图书出版公司
下载 暂无下载
介绍
编辑推荐

这本《伽罗瓦上同调》由(法)塞尔著,本书是一部译自法语的讲述伽罗瓦上同调的经典专著。经过30年的读者检验,好评不断,故此再次引进出版,将经典再现。书中增加了R.Steinberg的一份很成熟的论文,一些新的资料和扩展的参考文献。这些都使得这本书的内容更加充实。读者对象:数学专业的研究生和科研人员。

目录

Foreword

Chapter I. Cohomology of proflnite groups

1. Proflnite groups

1.1 Definition

1.2 Subgroups

1.3 Indices

1.4 Pro-p-groups and Sylow p-subgroups

1.5 Pro-p-groups

2. Cohomology

2.1 Discrete G-modules

2.2 Cochains, cocycles, cohomology

2.3 Low dimensions

2.4 Functoriality

2.5 Induced modules

2.6 Complements

3. Cohomological dimension

3.1 p-cohomological dimension

3.2 Strict cohomological dimension

3.3 Cohomological dimension of subgroups and extensions

3.4 Characterization of the profinite groups G such that cdp(G) < 1

3.5 Dualizing modules

4. Cohomology of pro-p-groups

4.1 Simple modules

4.2 Interpretation of H1: generators

4.3 Interpretation of H2: relations

4.4 A theorem of Shafarevich

4.5 Poincare groups

5. Nonabelian cohomology

5.1 Definition of H~ and of H1

5.2 Principal homogeneous spaces over A - a new definition of

    H1(G,A)

5.3 Twisting

5.4 The cohomology exact sequence associated to a subgroup

5.5 Cohomology exact sequence associated to a normal subgroup

5.6 The case of an abelian normal subgroup

5.7 The case of a central subgroup

5.8 Complements

5.9 A property of groups with cohomological dimension _< 1

Bibliographic remarks for Chapter I

Appendix 1. J. Tate - Some duality theorems

Appendix 2. The Golod-Shafarevich inequality

1. The statement

2. Proof

Chapter II. Gaiois cohomology, the commutative case

1. Generalities

1.1 Galois cohomology

1.2 First examples

2. Criteria for cohomological dimension

2.1 An auxiliary result

2.2 Case when p is equal to the characteristic

2.3 Case when p differs from the characteristic

3. Fields of dimension _<1

3.1 Definition

3.2 Relation with the property (C1)

3.3 Examples of fields of dimension _< 1

4. Transition theorems

4.1 Algebraic extensions

4.2 Transcendental extensions

4.3 Local fields

4.4 Cohomological dimension of the Galois group of an algebraic

    number field

4.5 Property (Cr)

5. p-adic fields

5.1 Summary of known results

5.2 Cohomology of finite Gk-modulea

5.3 First applications

5.4 The Euler-Poincare characteristic (elementary case)

5.5 Unramified cohomology

5.6 The Galois group of the maximal p-extension of k

5.7 Euler-Poincar6 characteristics

5.8 Groups of multiplicative type

6. Algebraic number fields

6.1 Finite modules - definition of the groups Pt(k, A)

6.2 The finiteness theorem

6.3 Statements of the theorems of Poitou and ~te

Bibliographic remarks for Chapter II

Appendix. Gaiols cohomology of purely transcendental extensions

1. An exact sequence

2. The local case

3. Algebraic curves and function fields in one variable

4. The case K = k(T)

5. Notation

6. Killing by base change

7. Manin conditions, weak approximation

   and Schinzel's hypothesis

8. Sieve bounds

Chapter III. Nonabelian Galols cohomology

1. Forms

1.1 Tensors

1.2 Examples

1.3 Varieties, algebraic groups, etc

1.4 Example: the k-forms of the group SLn

2. Fields of dimension _< 1

2.1 Linear groups: summary of known results

2.2 Vanishing of H1 for connected linear groups

2.3 Steinberg's theorem

2.4 Rational points on homogeneous spaces

3. Fields of dimension _< 2

3.1 Conjecture II

3.2 Examples

4. Finiteness theorems

4.1 Condition (F)

4.2 Fields of type (F)

4.3 Finiteness of the cohomology of linear groups

4.4 Finiteness of orbits

4.5 The case k = R

4.6 Algebraic number fields (Borel's theorem)

4.? A counter-example to the "Hasse principle"

Bibliographic remarks for Chapter III

Appendix 1. Regular elements of semisimple groups (by R. Steinberg)

1. Introduction and statement of results

2. Some recollections

3. Some characterizations of regular elements

4. The existence of regular unipotent elements

5. Irregular elements

6. Class functions and the variety of regular classes

7. Structure of N

8. Proof of 1.4 and 1.5

9. Rationality of N

10. Some cohomological applications

11. Added in proof

Appendix 2. Complements on Galois cohomology

1. Notation

2. The orthogonal case

3. Applications and examples

4. Injectivity problems

5. The trace form

6. Bayer-Lenstra theory: self-dual normal bases

7. Negligible cohomology classes

Bibliography

Index

截图
随便看

免责声明
本网站所展示的内容均来源于互联网,本站自身不存储、不制作、不上传任何内容,仅对网络上已公开的信息进行整理与展示。
本站不对所转载内容的真实性、完整性和合法性负责,所有内容仅供学习与参考使用。
若您认为本站展示的内容可能存在侵权或违规情形,请您提供相关权属证明与联系方式,我们将在收到有效通知后第一时间予以删除或屏蔽。
本网站对因使用或依赖本站信息所造成的任何直接或间接损失概不承担责任。联系邮箱:101bt@pm.me