网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略 音乐专区
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。
| 电子书 | 偏微分方程(第2版)(英文版) |
| 分类 | 电子书下载 |
| 作者 | (德)约斯特 |
| 出版社 | 世界图书出版公司 |
| 下载 |
|
| 介绍 |
内容推荐 由约斯特编著的《偏微分方程(第2版)(英文版)》是一部讲述偏微分方程理论的入门书籍。全书以椭圆偏微分为核心,系统讲述了相关内容,涉及到不少非线性问题,如,最大值原理方法,抛物方程和变分法。书中讲述了椭圆方程解的估计的主要方法,sobolev空间理论,弱解和强解,schauder估计,moser迭代。展示了椭圆,抛物和双曲解以及布朗运动,半群之间的关系。 目录 Introduction: What Are Partial Differential Equations?
1.The Laplace Equation as the Prototype of an Elliptic Partial Differential Equation of Second Order 1.1 Harmonic functions. Representation Formula for the Solution of the Dirichlet Problem on the Ball (Existence Techniques 0) 1.2 Mean Value Properties of Harmonic Functions. Subharmonic Functions. The Maximum Principle 2.The Maximum Principle 2.1 The Maximum Principle of E.Hopf 2.2 The Maximum Principle of Alexandrov and Bakelman 2.3 Maximum Principles for Nonlinear Differential Equations 3.Existence Techniques Ⅰ: Methods Based on the Maximum Principle 3.1 Difference Methods: Discretization of Differential Equations 3.2 The Perron Method 3.3 The Alternating Method of H.A.Schwarz 3.4 Boundary Regularity 4.Existence Techniques Ⅱ: Parabolic Methods. The Heat Equation 4.1 The Heat Equation: efinition and Maximum Principles 4.2 The Fundamental Solution of the Heat Equation. The Heat Equation and the Laplace Equation 4.3 The Initial Boundary Value Problem for the Heat Equation 4.4 Discrete Methods 5.Reaction-Diffusion Equations and Systems 5.1 Reaction-Diffusion Equations 5.2 Reaction-Diffusion Systems 5.3 The Turing Mechanism 6.The Wave Equation and its Connections with the Laplace and Heat Equations 6.1 The One-Dimensional Wave Equation 6.2 The Mean Value Method: Solving the Wave Equation Through the Darboux Equation 6.3 The Energy Inequality and the Relation with the Heat Equation 7.The Heat Equation, Semigroups, and Brownian Motion 7.1 Semigroups 7.2 Infinitesimal Generators of Semigroups 7.3 Brownian Motion 8.The Dirichlet Principle. Variational Methods for the Solution of PDEs (Existence Techniques Ⅲ) 8.1 Dirichlet's Principle 8.2 The Sobolev Space W1,2 8.3 Weak Solutions of the Poisson Equation 8.4 Quadratic Variational Problems 8.5 Abstract Hilbert Space Formulation of the Variational Problem. The Finite Element Method 8.6 Convex Variational Problems 9.Sobolev Spaces and L2 Regularity Theory 9.1 General Sobolev Spaces. Embedding Theorems of Sobolev, Morrey, and John-nirenberg 9.2 L2-Regularity Theory: Interior Regularity of Weak Solutions of the Poisson Equation 9.3 Boundary Regularity and Regularity Results for Solutions of General Linear Elliptic Equations 9.4 Extensions of Sobolev Functions and Natural Boundary Conditions 9.5 Eigenvalues of Elliptic Operators 10.Strong Solutions 10.1 The Regularity Theory for Strong Solutions 10.2 A Survey of the Lp-Regularity Theory and Applications to Solutions of Semilinear Elliptic Equations 11.The Regularity Theory of Schauder and the Continuity Method (Existence Techniques Ⅳ) 11.1 Cα-Regularity Theory for the Poisson Equation 11.2 The Schauder Estimates 11.3 Existence Techniques Ⅳ: The Continuity Method 12.The Moser Iteration Method and the Regularity Theorem of de Giorgi and Nash 12.1 The Moser-Harnack Inequality 12.2 Properties of Solutions of Elliptic Equations 12.3 Regularity of Minimizers of Variational Problems Appendix.Banach and Hilbert Spaces. The Lp-Spaces References Index of Notation Index |
| 截图 | |
| 随便看 |
|
免责声明
本网站所展示的内容均来源于互联网,本站自身不存储、不制作、不上传任何内容,仅对网络上已公开的信息进行整理与展示。
本站不对所转载内容的真实性、完整性和合法性负责,所有内容仅供学习与参考使用。
若您认为本站展示的内容可能存在侵权或违规情形,请您提供相关权属证明与联系方式,我们将在收到有效通知后第一时间予以删除或屏蔽。
本网站对因使用或依赖本站信息所造成的任何直接或间接损失概不承担责任。联系邮箱:101bt@pm.me