基于统计学习的时空动力系统建模(英文版)豆瓣PDF电子书bt网盘迅雷下载电子书下载-霍普软件下载网

网站首页   软件下载   游戏下载   翻译软件   电子书下载   电影下载   电视剧下载   教程攻略   音乐专区

请输入您要查询的图书:

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

电子书 基于统计学习的时空动力系统建模(英文版)
分类 电子书下载
作者
出版社 科学出版社
下载 暂无下载
介绍
目录
Contents
Preface
Chapter 1 Overview of Statistical Learning Methods
1.1 A brief introduction of statistical learning
1.2 Linear model
1.2.1 Linear regression model
1.2.2 Regularized linear regression
1.2.3 Reproducing kernel model
References
Chapter 2 Online Kernel Learning of Nonlinear Spatiotemporal Systems
2.1 Motivation of this chapter
2.2 Discretization and lattice dynamic systems
2.3 MIMO partially linear model
2.4 The PM-RLS-SVM for MIMO partially linear systems
2.5 Numerical simulations and some discussions
2.6 Summary
References
Chapter 3 Learning of Partially Known Nonlinear Stochastic Spatiotemporal Dynamical Systems
3.1 Motivation of this chapter
3.2 Reproducing kernel methods for partially linear models
3.3 The extended partially linear model for SPDE
3.4 Extended partially ridge regression
3.5 Simulations and comparison
3.6 Summary
References
Chapter 4 Learning of Nonlinear Stochastic Spatiotemporal Dynamical Systems
4.1 Motivation of this chapter
4.2 Stochastic evolution equation and approximation error of FEM
4.3 Learning framework and the kernel learning method
4.4 Learning with irregular observation data
4.5 Simulations and comparison
4.6 Summary
References
Chapter 5 Learning of Nonlinear Spatiotemporal Dynamical Systems with Non-Uniform Observations
5.1 Motivation of this chapter
5.2 Discretization and non-uniform sampling problem
5.3 A multi-step learning method with non-uniform sampling data
5.4 Inverse meshless collocation model and learning algorithm
5.5 Numerical example
5.6 Summary
References
Chapter 6 Online Learning of Nonlinear Stochastic Spatiotemporal System with Multiplicative Noise
6.1 Motivation of this chapter
6.2 Discretization and heterogeneous partially linear model
6.3 Error dynamical system of PLM
6.4 Robust optimal control algorithm for error dynamical system
6.5 Numerical examples
6.6 Summary
References
Chapter 7 Robust Online Learning Method Based on Dynamical Linear Quadratic Regulator
7.1 Motivation of this chapter
7.2 Benchmark online learning methods
7.3 Online learning framework
7.4 Robust online learning method based on LQR
7.5 The online learning in kernel spaces
7.6 Numerical examples
7.7 Summary
References
Chapter 8 Approximate Controllability of Nonlinear Stochastic Partial Di.erential Systems
8.1 Motivation of this chapter
8.2 Basic concepts and preliminaries
8.3 The controllability results
8.4 Illustrative example
8.5 Summary
References
截图
随便看

免责声明
本网站所展示的内容均来源于互联网,本站自身不存储、不制作、不上传任何内容,仅对网络上已公开的信息进行整理与展示。
本站不对所转载内容的真实性、完整性和合法性负责,所有内容仅供学习与参考使用。
若您认为本站展示的内容可能存在侵权或违规情形,请您提供相关权属证明与联系方式,我们将在收到有效通知后第一时间予以删除或屏蔽。
本网站对因使用或依赖本站信息所造成的任何直接或间接损失概不承担责任。联系邮箱:101bt@pm.me